首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1216篇
  免费   42篇
  国内免费   46篇
  2023年   6篇
  2022年   13篇
  2021年   17篇
  2020年   25篇
  2019年   14篇
  2018年   15篇
  2017年   16篇
  2016年   20篇
  2015年   18篇
  2014年   36篇
  2013年   60篇
  2012年   29篇
  2011年   47篇
  2010年   22篇
  2009年   28篇
  2008年   40篇
  2007年   46篇
  2006年   54篇
  2005年   38篇
  2004年   58篇
  2003年   43篇
  2002年   49篇
  2001年   43篇
  2000年   29篇
  1999年   38篇
  1998年   29篇
  1997年   32篇
  1996年   39篇
  1995年   27篇
  1994年   28篇
  1993年   29篇
  1992年   32篇
  1991年   30篇
  1990年   21篇
  1989年   25篇
  1988年   16篇
  1987年   25篇
  1986年   18篇
  1985年   28篇
  1984年   25篇
  1983年   13篇
  1982年   13篇
  1981年   11篇
  1980年   16篇
  1978年   6篇
  1977年   6篇
  1976年   6篇
  1975年   3篇
  1974年   6篇
  1973年   10篇
排序方式: 共有1304条查询结果,搜索用时 15 毫秒
101.
The biochemical regulation of photosynthate partitioning was investigated in a starchless mutant (TC7) of Arabidopsts thaliana (L.) Henyh, that was deficient in chloroplast phosphoglucomutase (Caspar et al. 1985. Plant Physiol. 79: 11–17). Plants were raised at 20°C with a 20 h light and 4 h dark period, so that the growth rates of the mutant and wild type were similar. Two or 3 isoforms of phosphoglucomutase were separated by ion-exchange chromatography using mutant and wild type leaf preparations, respectively. Initial rate kinetics of all isoforms were similar. Light-saturated photosynthetic oxygen evolution rates of the mutant and wild type were 224 and 302 nmol g-1 chlorophyll h-1, respectively. Starch, sucrose and hexose concentrations were unchanged in wild type leaves after a dark to light transition, whereas sucrose and hexose increased in mutant leaves. Hexose-phosphates accumulated in both genotypes in the light, although the steady-state leaf concentrations of glucose 6-phosphate were 3-fold higher in mutant than in wild type samples. Fructose 2,6-bisphosphate and glucose 1,6-bisphosphate were lower in the mutant than in the wild type at the end of the dark period when mutant leaves were depleted of carbohydrates. Levels of UTP were lower in the mutant than in the wild type, possibly indicating that growth conditions had induced phosphate limited photosynthesis. These results are discussed in relation to the regulation of photosynthetic carbon metabolism.  相似文献   
102.
The sucrose content of acid lime [ Citrus aurantifolia (Christm.) Swing.] juice tissue was measured at time 0 and at various times following incubation at 15.5, 26.6 and 37.7°C. The decline in sucrose content in fruit stored at 15.5°C paralleled the expected values for a sucrose solution at pH 2.1. At higher temperatures, the in vivo sucrose content decreased at significantly lower rates than the expected values. In fruit stored at 26.6 and 37.7°C, the vacuolar pH increased 0.11 and 0.23 units, respectively. When sucrose hydrolysis was recalculated at the increased vacuolar pH of juice cells stored at 26.6 and 37.7°C, the calculated values were similar to the measured values obtained in vivo. It is concluded that within the limits of the experimental conditions, the rates of sucrose acid hydrolysis are regulated by changes in the vacuolar H+ concentration.  相似文献   
103.
Knowledge of phospholipids in relation to cell cycle phases would facilitate the manipulation of tissue culture cells for crop improvement. Rice cells, Oryza sativa L. introduction PI 353–705, were initiated from anther cultures and grown as liquid suspensions. Replicate cultures were harvested for analysis at various time periods up to 21 days. Phosphatidylcholine (PC) and phosphatidylethanolamine (PEA) content rapidly increased 2.5 fold by 3 days, follwed by a progressive decrease in both compounds to 15 days to below initial transfer levels. There was an increase in PC and PEA back to transfer levels from 16 to 21 days. Cells in the linear phase were transferrred 11 days after inoculation to media minus sucrose. Carbohydrate starvation of the cells and subsequent release from inhibition with 3% sucrose resulted in partially synchronized cultures as seen by rapid [3H]-thymidine incorporation up to 24 h followed by a decrease to a minimum at 72 h. Phosphatidylcholine and phosphatidylethanolamine increased linearly throughout the DNA synthesis period in synchronized cells, reaching a maximum at 48 h and 60 h, respectively. The levels of both compounds 72 h after release from sucrose starvation are only 30% of non-starved controls 72 h after transfer to fresh media.  相似文献   
104.
105.
106.
Storage of potato tubers at low temperatures leads to the accumulation of glucose and fructose in a process called 'cold sweetening'. The aim of this work was to investigate the role of sucrose-phosphatase (SPP) in potato tuber carbohydrate metabolism at low temperature (4 degrees C). To this end, RNA interference (RNAi) was used to reduce SPP expression in transgenic potato tubers. Analysis of SPP specific small interfering RNAs (siRNAs), SPP protein accumulation and enzyme activity indicated that SPP silencing in transgenic tubers was stable during the cold treatment. Analysis of soluble carbohydrates showed that in transgenic tubers, cold-induced hexogenesis was inhibited while, despite strongly reduced SPP activity, sucrose levels exceeded wild-type (WT) values four- to fivefold after 34 d of cold treatment. This led to a drastic change in the hexose-to-sucrose ratio from 1.9 in WT tubers to 0.15 to 0.11 in transgenic tubers, while the total amount of soluble sugars was largely unchanged in both genotypes. Sucrose-6(F)-phosphate (Suc6P), the substrate of SPP, accumulated in transgenic tubers in the cold which most likely enables the residual enzyme to operate with maximal catalytic activity in vivo and thus, in the long term, counterbalances reduced SPP activity in the transformants. Northern analysis revealed that cold-induced expression of vacuolar invertase (VI) was blocked in SPP-silenced tubers explaining a reduced sucrose-to-hexose conversion. Suc6P levels were found to negatively correlate with VI expression. A possible role of Suc6P in regulating VI expression is discussed.  相似文献   
107.
Although soil contains only traces of soluble carbohydrates, plant roots take up glucose and sucrose efficiently when supplied in artificial media. Soluble carbohydrates and other small metabolites found in soil are in part products from exudation from plant roots. The molecular nature of the transporters for uptake and exudation is unknown. Here, fluorescence resonance energy transfer (FRET) glucose and sucrose sensors were used to characterize accumulation and elimination of glucose and sucrose in Arabidopsis roots tips. Using an improved image acquisition set-up, FRET responses to perfusion with carbohydrates were detectable in roots within less than 10 sec and over a wide concentration range. Accumulation was fully reversible within 10-180 sec after glucose or sucrose had been withdrawn; elimination may be caused by metabolism and/or efflux. The rate of elimination was unaffected by pre-incubation with high concentrations of glucose, suggesting that elimination is not due to accumulation in a short-term buffer such as the vacuole. Glucose and sucrose accumulation was insensitive to protonophores, was comparable in media differing in potassium levels, and was similar at pH 5.8, 6.8 and 7.8, suggesting that both influx and efflux may be mediated by proton-independent transport systems. High-resolution expression mapping in root tips showed that only a few proton-dependent transport of the STP (Sugar Transport Protein) and SUT/SUC (Sucrose Transporter/Carrier) families are expressed in the external cell layers of root tips. The root expression maps may help to pinpoint candidate genes for uptake and release of carbohydrates from roots.  相似文献   
108.
蔗糖合酶(sucrose synthase)与植物库强调节、次生壁的形成和纤维素合成等有着密切的联系,其中在纤维素合成过程中的作用尤为显著。本研究根据我们已获得的毛白杨PtSUS1基因片段设计引物,采用RACE技术,获得了毛白杨PtSUS1的基因序列,测序结果显示该基因序列全长为2 669 bp,包括一个完整的阅读框,编码805个氨基酸。通过Blast检索分析表明,PtSUS1与拟南芥、巨桉、陆地棉、温州蜜柑、毛果杨SUS1的核酸和氨基酸序列的同源性分别达到76%~97%和82%~97%。运用生物信息软件对PtSUS1编码的蛋白进行了二级结构预测和功能位点分析,结果显示该蛋白氨基酸序列包括两个功能域,存在可能的磷酸化位点38个,无跨膜结构域存在。系统进化分析表明PtSUS1与PtSUS2关系最为接近。RT-PCR分析结果显示,PtSUS1在被检测的毛白杨根、茎、叶及雌雄花芽组织和器官中均有表达,呈现组成型表达模式。该研究为进一步深入探索毛白杨蔗糖合酶基因PtSUS1的功能奠定了基础。  相似文献   
109.
14‐3‐3 proteins are a large family of proteins but exact roles of their members in plant response to abiotic stresses are not clear, especially under nutrient deficiency. We investigated the expressions of all the tomato 14‐3‐3 gene family members (TFT1TFT12) under low phosphorus stress (LP) and found that TFT6 belongs to the later responsive gene while TFT7 belongs to the early responsive gene. When the two genes were separately introduced into Arabidopsis and overexpressed, their plant growth under LP was much enhanced compared with wild‐type plant. TFT6 overexpressing plants showed reduced starch synthase activity, reduced starch content but enhanced sucrose loading into phloem in the shoot under LP. TFT7 overexpressing plants had much enhanced H+ flux along their root tip and activity of plasma membrane H+‐ATPase in the roots under LP. Our results suggest that TFT6 and TFT7 play different roles in plant adaption to LP. TFT6 acts mainly in leaves and is involved in the systemic response to LP by regulating leaf carbon allocation and increasing phloem sucrose transport to promote root growth, while TFT7 directly functions in root by activating root plasma membrane H+‐ATPase to release more protons under LP.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号